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Abstract—In this study of the effect of wall conduction on laminar free convection between asymmetrically
heated vertical plates, an implicit finite difference scheme is used to solve the governing equations. The
governing independent parameters are identified to be Prandtl number (Pr), Grashof number (Gr), ratio
of thermal conductivity of the solid to air (X), wall thickness to channel width ratio (¢/B), channel height
to width ratio (L/B) and the asymmetric heating parameter (y,). The effect of wall conduction on free
convective flow of air under asymmetrically heated conditions (yy = 1.0, 0.5, and 0) is discussed. Cal-
culations are made for K= 1 and 10, /B = 0.1 and 0.5, Gr = 10~10° and £;8 = | and 5. The maximum
increase in mass flow rate of air for symmetric heating due to wall conduction is 30%. The maximum
decrease in average Nusselt number due to wall conduction is 22%. Wall conduction effects are more
significant for low Gr flows than for high Gr flows.

INTRODUCTION

CONSIDERABLE attention has been given to laminar
free convection in vertical channels. In the recent past
there has been a renewed interest in this topic because
of its applications to cooling of electronic circuit
boards used in modern computers. Depending on the
nature of the approach to this problem, the literature
can be classified into experimental and numerical
work. Experimental studies of laminar free convection
between parallel heated vertical plates {1-4] consider
both symmetric and asymmetric heating conditions.
Finite difference methods were used to study laminar
free convection by some investigators [5-7]. These
calculations were made by solving boundary layer
equations between vertical plates. Some other inves-
tigators conducted both experiments and com-
putations to study free convection between parallel
plates [8-11].

A careful examination of the literature reveals that
Burch et al. {12] were the only ones to study the
impact of wall conduction on laminar free convection
between parallel plates. A control volume based finite
difference method was used to solve the governing
equations. Consideration was given only to symmetric
heating conditions and external surfaces of the plates
were subjected to uniform wall temperature con-
ditions (UWT). A range of geometrical, wall con-
duction, and heat transfer parameters were addressed.
Calculations were made for the Grashof number (Gr)

range of 10~10° This study showed that wall con-
duction has a significant impact on the heat transfer
at high Grashof numbers, low conductivity ratios, and
high wall thickness to channel width ratios.

The objective of the present work is to numerically
study the effect of wall conduction on laminar free
convection between parallel vertical plates subjected
to asymmetric heating. Plates are heated by subjecting
the external surfaces of the plates to uniform heat
flux (UHF) conditions. An implicit finite difference
scheme has been developed to solve the governing
equations. In the following sections the model devel-
opment, solution methodology, validation of the solu-
tion methodology and results of parametric studies
are discussed.

MODEL DEVELOPMENT

The geometrical configuration for analysis is shown
in Fig. 1. Only steady-state, laminar free convection
is considered. The external surfaces of the left and
right walls are heated to UHF conditions in channels
with unequal (asymmetric) wall heating. The tem-
perature difference between the walls and the air at
the channel inlet is the driving force for air flow.
Thermo-physical properties of air are assumed to
remain constant, except for the density. The Bous-
sinesq approximation is invoked, thereby confining
the density variation to the buoyancy term in the axial

1013



1014 S. H. Kim er al.
NOMENCLATURE
B channel width Greek symbols
Gr  Grashof number B thermal expansion coefficient
k thermal conductivity h asymmetric heating parameter
K ratio of thermal conductivity of solid wall 0 non-dimensional temperature
to the thermal conductivity of air u viscosity
L channel height v kinematic viscosity
M mass flow rate of air P density.
Nu  Nusselt number
P non-dimensional pressure Subscripts
P dimensional pressure of air a air
Pr Prandtl number e external surface
q non-dimensional heat flux exit  channel exit
q dimensional heat flux i interface
t wall thickness 1 left wall (hot side)
T dimensional temperature max maximum value
u dimensional velocity in the axial direction min  minimum value
v dimensional velocity in the transverse r right wall (cold side)
direction s solid
U, V' non-dimensional velocities 0 channel inlet.
x axial coordinate
y transverse coordinate Superscript
X, Y non-dimensional coordinates. average value.

momentum equation. The temperature fields of air
and the solid walls are coupled because temperature
and heat flux are continuous at both the left and right
interfaces. The temperature field of air is coupled to
its axial momentum equation by the buoyancy term,
and the continuity equation for air is linked to the
axial momentum equation by the velocity field. The
pressure variation in the transverse direction is
assumed to be negligible. Based on these simplifying
assumptions and discussion, the model equations in
non-dimensional terms can be written as:
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Fi1G. 1. Physical model.
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The model equations form a set of four coupled
partial differential equations. The U-velocity field is
elliptic in the transverse direction and is assumed to
have a parabolic behavior in the stream-wise (X)



Effect of wall conduction on free convection between asymmetrically heated vertical plates

direction, warranting specification of the U-velocities
at the channel inlet and the interfaces. The U-velocities
are zero at both the left and right interfaces because
of the no-slip conditions. The U-velocity at the chan-
nel inlet is unknown. Only the first derivative of pres-
sure appears in the axial momentum equation, requir-
ing P to be specified only at the entrance. Non-
dimensional pressure is known to be zero (P = 0) at
the exit (X = 1/Gr) of the channel and is assumed to
be zero at the channel inlet; it is unknown and must
be part of the solution. The extra information avail-
able on pressure (P =0, X = 1/Gr) alleviates the
difficulty of not knowing U/ at X = 0.

In the solution process, a uniform velocity U, at
the channel inlet is estimated and computations are
made by marching in the X-direction. The calculated
non-dimensional pressure at the channel exit should
be zero; if not, the estimated value U, is changed and
calculations are repeated until P is zero at the channel
exit. The V-velocity is zero at the left and right inter-
faces because of the no-slip condition and also at the
channel inlet since uniform velocity U, is assumed to
prevail across the channel width. Note that at X = 0,
p is not equal to p, and can be determined from the
potential flow theory to be equal to —pu¢/2. Sample
calculations with p = —pu/2 at X = 0 indicated that
the results did not vary significantly for the range of
Gr(<10* and L/B(<5).

The energy equation for air is elliptic in the trans-
verse (Y) direction and assumed parabolic in the axial
direction. Since heat flux and temperature are con-
tinuous at both the left and right interfaces

08 o0 .
K 5’ = — ﬁ(left interface)
ot o8 .,
K Fran + 37 {right interface). ()

The non-dimensional temperature 6 at the channel
inlet is zero (8 = 0, X = 0). A single energy equation
describes the temperature distribution in the left and
right walls (equation (4)). This equation is elliptic in
both the axial and transverse directions. The top and
bottom surfaces of both walls are treated as adiabatic.
Boundary conditions at the external surface of the
plates are
o6

K Py Ani 1 (external surface of the left wall)  (6)

K G—f—g; = v, (external surface of the right wall). (7)

In equation (7), 74 represents the asymmetric heating
parameter (Y = Ge./qc)-

SOLUTION TECHNIQUE

The dependent variables are U, ¥, P, and 0; the
independent variables are essentially spatial coor-
dinates. Hence, there are four unknowns and four
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partial differential equations, equations (1)~(4). The
axial momentum equation is coupled with the air tem-
perature field by the buoyancy term. The air tem-
perature field is coupled to the solid temperature field
by the interface heat flux and temperature continuity
requirement. Since the coupled and non-linear nature
of these equations precludes the use of a closed form
solution technique, this set of equations is solved by
a fully implicit finite difference technique.

The solution procedure has two steps: (1) dis-
cretization of the partial differential equations into
linear algebraic equations, and (2) solution of a set of
simultaneous equations to obtain the pressure,
velocity, and temperature fields. The governing equa-
tions for air (equations (1)-(3)) display elliptic
behavior in the Y-direction and parabolic behavior in
the X-direction. The energy equation for the solid
displays elliptic behavior in both the X- and Y-direc-
tions. In the axial momentum equation for air, the
derivatives in the X-direction are replaced by first-
order, forward difference expressions; derivatives in
the Y-direction are replaced by second-order, central
difference expressions. The same procedure is adopted
to obtain the finite difference form of the energy equa-
tion for air (equation (3)). The derivatives in the
energy equation for the solid (includes both left and
right plates) are replaced by the second-order, central
difference expressions.

Examination of the governing equations for air
reveals three governing equations (continuity,
momentum, and energy) and four unknowns (U, V,
P, and 6). The parabolic behavior of these equations
enables marching the computations in the axial direc-
tion. The mass flow rate of air at each stream-wise
focation is constant because of steady-state
conditions. Hence, the integral form of the continuity
equation

YLA‘
_[ Udy = U, (8)

Ya

makes up for the missing equation. The algebraic
form of equation (8) is obtained by replacing it
with Simpson’s one-third rule. The computational
sequence is as follows.

(1) The inlet velocity U, is estimated and treated as
uniform across the channel.

(2) The axial momentum equation (equation (2))
and the integral form of the continuity equation
(equation (8)) for air at each marching station
between the channel inlet and exit are solved to obtain
U and P. The coupled algebraic equations at each
marching station are transformed to an upper triangle
matrix form and consequently solved by the Gauss
elimination technique.

(3) With the differential form of the continuity
equation for air (equation (1)), the values of ¥V-vel-
ocity are obtained everywhere.

{4) The energy equation for air {equation (3)) and
solid (equation (4)) and with the interface conditions
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(equation (5)) are solved to obtain the air and solid
temperatures. Note that although solid and air tem-
peratures are coupled. one is elliptic (equation (4)),
and the other is parabolic (equation (3)). The finite
difference forms of these equations are solved by
sweeping in the cross-stream (Y) and axial (X) direc-
tions. In each of these sweeps, the resulting equations
are solved by the tri-diagonal matrix algorithm. In
sweeping in the cross-stream direction, the air tem-
perature field is not considered. In sweeping in the
axial direction, the temperature fields of both air and
solid are included.

(5) Steps 2-4 are repeated until the maximum
difference of temperatures between two successive
iterative steps at any location is less than 10~¢.

6) If P_JIP..|<5x10"% convergence is
declared. If not, the estimated value of the inlet
velocity, U,, is altered and steps 2-6 are repeated. P,
is the minimum value of P in the domain.

VALIDATION OF THE SOLUTION TECHNIQUE

A number of numerical experiments were con-
ducted to establish the grid independent solution. In
the transverse direction, 91 uniform grid points were
deployed. Forty grid points were placed in the solid
and 51 in the air domain. In the axial direction, the
step size at the channel entrance was made equal to
0.1% of the total length (L = 1/Gr) of the channel,
and the step size was expanded gradually with an
expansion factor of 3%. For this grid size the sum of
the average of the left and right local interface heat
flux values was within 3% of the sum of the heat flux
values imposed on the external surfaces of the left and
right walls.

The solution scheme is validated by comparing the
average mass flow rate and the average Nusselt num-
ber for the case of no wall conduction with the cal-
culations of ref. [10]. As shown in Figs. 2(a) and
(b), the difference between the two calculations is
negligible. The average mass flow rate is defined by

N 2 [
A =(l+7u),[v._. Udy. ©)

The average Nusselt number for the channel is given
by

FY (qe.l +qer)/2

Nu= G567 (o
where
YGr
gi.l = J‘ oi.l dx (l 1)
0
and
\;Gr
0
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F1G. 2(a). Mass flow rate.
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FIG. 2(b). Average Nusselt number.

RESULTS AND DISCUSSION

Independent parameters

Examination of the governing equations reveals
that the independent parameters are Grashof number
(Gr), Prandtl number (Pr), wall thickness to channel
width (#/B), channel length to channel width ratio
(L/B), ratio of the thermal conductivity of the wall to
the thermal conductivity of the fluid (X), and the
asymmetric heating parameter (yy). The independent
variables are the spatial coordinates. In considering
only flow of air in the channel, Pr was fixed at 0.7.
The Grashof number (Gr) was varied between 10 and
10*. Because the higher values of Gr (> 10*) required
extremely small step sizes in the channel entrance, and
hence a prohibitively large CPU time for the
computations, calculations were confined to Gr <
10%. The effect of wall conduction on heat transfer
and the flow field is studied by calculating for
K=1and 10, t/B=0.1 and 0.5, and L/B=1 and
5. Calculations were made for asymmetric heating
parameter (y4) values of 0, 0.5, and 1. y4 =1 cor-
responds to a symmetric heating case, and y, =0
implies that the external surface of the right wall is
subjected to an adiabatic condition. For y, < 1, the
left and right walls are referred to as hot and cold
walls, respectively.

The effects of wall conduction are discussed by
examining the impact of the independent parameters
on axial pressure distribution (P), interface tem-
peratures (8;, and 0,,), interface heat fluxes (g;, and
¢i.), the average mass flow rate (M), and the average
Nusselt number (Nu). Though the calculations were
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performed for a wide range of independent par-
ameters only selected results are detailed.

Interface heat flux

The non-dimensional heat flux at a transverse

location is given by
c0

1=~ 37| (13)
Figure 3 shows the axial variation of the left and right
interface heat fluxes (¢;, and ¢;,). The positive values
of the left interface heat flux imply that the heat flows
from the left wall to the air. Negative values of heat
flux for the right interface imply that the heat flows
from the right wall to the air. In general, although
the external surfaces of the walls are subjected to a
uniform heat flux, the heat flux crossing the interfaces
is not uniform. From Fig. 3 for Gr = 10%and y, = 0.5,
the interface heat flux in the region closer to the chan-
nel entrance is higher than the imposed heat flux on
the external surface. This trend reverses in the region
closer to the channel exit. Henceforth, the regions
closer to the channel entrance and exit are referred to
as upstream and downstream regions, respectively.
This behavior is more pronounced for higher values
of K and t/B. The thermal boundary layer at the
channel entrance is thin and has a high heat transfer
coefficient, indicating that the ability of the walls to
lose heat to the air is higher in the upstream region
than in the downstream region. Heat is transported
from the downstream to the upstream region within
the walls because of wall conduction. Increasing
values of K and ¢/B contribute to an increase in heat
transfer within the walls from the downstream to the
upstream region.

Figure 4 shows the effect of Gr on the interface heat
flux. The case of 74 = 1 is considered, where the left
and right interface heat fluxes are identical. At lower
values of Gr (=10), the interface heat flux is highly
nonuniform. A higher Gr (= 10*) represents a shorter

channel than for Gr = 102. In shorter channels, the
thermal development is incomplete and the axial
gradient of the heat transfer coefficient is less than
that for longer channels (Gr = 10%) where the thermal
development is complete. This is the reason for the
highly non-uniform behavior of the interface heat flux
at lower Gr (=10). This non-uniform behavior
becomes less pronounced with increase in Gr. The
same behavior was observed for yy < 1.

The effect of channel length to channel width ratio
(L/B) on interface heat flux is shown in Fig. 5. The
interface heat flux (g;;) is more uniform for the case
of L/B =5 than for 1 because the conduction heat
flux in the wall is inversely proportional to the length,
indicating that the wall conduction heat flux is low in
the axial direction for higher values of L/B(=5). Less
heat transported in the axial direction within the wall
leads to a more uniform interface heat flux.

The axial variation of the right interface heat flux
(g:.,) for y4 =0 and Gr = 10* is shown in Fig. 6.
Though the external surface is insulated, heat is trans-

10.0

L 1 Ligin

INTERFACE HEAT FLUX (q,)
P

0.1 =

X/t

FiG. 4. Axial variations of interface heat flux, yy =1,
t/B=05K=1,LIB=1.
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ferred from the right wall to the air in the upstream
region and from the air to the wall in the downstream
region. This is to be expected because heat is trans-
ported within the wall from the downstream region
to the upstream region.

Interface temperature

The interface temperature distribution for Gr = 10*
and y, = 1 is shown in Fig. 7. The axial gradient of
the interface temperature is rather steep when wall con-
duction effects are absent (¢/B = 0). The wall conduc-
tion effects tend to reduce the interface temperature
gradient in the axial direction. Thus the higher the
wall conduction effect, the greater the tendency for
the interface temperature to flatten out. The same
behavior was observed for other values of Gr and y,,.

The axial variation of the external surface tem-
perature (8,, and 8,,) for Gr = 10* and y, =1 is
shown in Fig. 8. As K increases, the difference between
the interface and the external surface temperature
decreases. This temperature difference increases with
t/ B because the wall thermal resistance in the Y-direc-
tion increases.

RIGHT INTERFACE HEAT FLUX (q‘ r)

S. H. Kim et al.

Maximum external and interface temperatures

A design engineer needs to know the maximum
temperatures that these channels attain. Both the
maximum external surface temperature (0, n,,) and
the maximum interface temperature (6, .., variations
with Gr for y, = | and 0.5 are shown in Figs. 9 and
10. For the case of ¢/B = 0, the external wall and the
interface temperatures are the same. In general, the
8, 1max and 8, ., decrease with increase in Gr because
the heat transfer coefficient increases as Gr increases,
leading to lower wall temperatures. The wall con-
duction effects have less influence on 6, than on
0. .mas- Note that the maximum temperature is at the
channel exit. Interestingly, as Gr increases, the tem-
perature difference (8 .. — 0 mae) increases. At higher
Gr (= 10", the heat transported within the wall in the
axial direction is lower (Fig. 4), leading to a higher
transverse heat flux at the channel exit within the
wall, This resulis in a higher temperature difference
(0. max — B max) and consequently, a higher 6, ... Simi-
larly, (B¢ max ~ 8i.msx) decreases with decrease in Gr.

Transverse temperature and velocity distribution

Figure 11 shows the effect of wall conduction on
the transverse temperature distribution. Transverse
temperature distributions at two axial locations
(X = 0.269 and 0.886) are chosen for discussion.
X =0.269 represents the upstream region, and
X = 0.886 represents the downstream region. In the
upstream region, the temperature is the lowest for the
case of no wall conduction (¢/B = 0). In the upstream
region, the temperature increases with wall con-
duction effects and is a maximum for t/B = 0.5 and
K = 10, attributed to the transport of heat by wall
conduction from the downstream to the upstream
region. This trend is reversed in the downstream
region because the bulk temperature of the air in the
absence of wall conduction (¢/B = 0) is lower as it
enters the downstream region and has a greater ability
to absorb heat. The same trends were observed for
other values of Gr and yy,.

102

Gre10*

210 2

(-]
]

RIGHT INTERFACE HEAT FLUX (qL r)

~2x16 2
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2 /805 Kwi L/Bs=t
3 t/Be0] Knl L/Bat
-2 4 t/Be0S Knt L /B=S
0 T T
0.0 0.5 1.0
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F1G. 6. Axial right interface heat flux distribution, y4 = 0.
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The effect of wall conduction on the velocity profiles
(U/U,) is shown in Fig. 12. Wall conduction effects
tend to make the interface temperature uniform. Since
the velocity (U/U,) is proportional to the interface
temperature, (U/U,) in the upstream region for
t/b =0 is the lowest; this trend is reversed in the
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downstream region. In the downstream region the
wall conduction effect influences (U/Ug)na., up to a
maximum value of 3.5%.

The slope of the velocity profile adjacent to the cold
wall in the downstream region (Fig. 12) approaches
zero. The point of zero slope is the separation point
and downstream of the separation point one can
expect flow reversal. However, in our calculations no
separation point was observed. It should be recalled
that in this analysis the flow is assumed to be of the
boundary layer type and flow reversals cannot be
predicted. The experimental work of Sparrow et al.
[8] with water (Pr =~ 5) showed that the recirculation
pocket exists near the cold wall in the downstream
region under highly asymmetric heating conditions
(yu = 0). Recently, Webb and Hill {13] experimentally
studied free convective flow of air in an asym-
metrically heated channel (y, = 0) at high Rayleigh
number (107). The experimental results of Webb and
Hill [13] compared within 5% of the numerical pre-
dictions of ref. {10], which is also based on the bound-
ary layer type flow assumption. Based on these facts
it may be concluded that the boundary layer type flow
assumption is valid for free convective flow of air
(Pr~0.7) in the range of parameters examined in
this study. Also, the studies of Sparrow ez al. (8] for
Pr =~ 5.0 have shown that the presence of a recir-
culation pocket has a negligible effect on the average
Nusselt number.

Axial pressure distribution

The effect of wall conduction on the pressure dis-
tribution is shown in Fig. 13 for Gr=10° and
v = 0.5. P, is lowest for the case where the wall
conduction is absent (¢/B=0). In general, P,;,
increases with increase in t/B and K. This same
behavior was observed for other values of Gr and 7.
Figure 14 shows the variation of P, with Gr. As
Gr increases, both P, and wall conduction effects
decrease.
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Mass flow rate
The non-dimensional mass flow rate of air (M) is

defined by
UQB;’ Y
M = vL Gr ,L‘ var.

(14)

Figure 15 shows the impact on mass flow rate (M) for
different asymmetric heating parameters and L/B = 1
and 5. The mass flow rate increases with increase in
Gr as expected since the buoyancy forces are higher
at higher values of Gr. The influence of wall con-
duction on M decreases with increase in Gr but
increases with decrease in y4. For 7y = 1, the wall
conduction effects increase the mass flow rate by as
much as 30% for Gr = 10. For the same value of y,,
the wall conduction effects increase the mass flow
rate by as much as 8% at Gr = 10*. These calculated
percentage increases are higher bounds for symmetric
heating conditions (y4 = 1). For y4 < 1, however,
these percentages increase further and are the lower
bounds, The increase of mass flow rate with wall con-
duction effects is attributed to an increase in the aver-
age interface temperatures. The increase in average
interface temperature is lower for Gr = 10* than for
10. It is clear from Fig. 15 that when L/B is increased
from 1 to 5 the change in mass flow rate is negligible
because L/B has a minimum impact on interface heat
flux and temperatures {Figs. 5and 7).
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Local Nusselt numbers

The local Nusselt numbers for the left and right
interfaces are defined as

Nuy = Z—: (15)
Nu, = g— (16)

The axial variation of the local Nusselt number at the
left and right interfaces for y4 = 0.5 is shown in Fig.
16. As expected, the local heat transfer coefficient is
higher for higher values of Gr (=10*). The gradient
of the heat transfer coefficient for Gr = 10* is less
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steep than for Gr = 10 because Gr = 10° represents a
shorter channe!l and thermal development is incom-
plete.

Average Nusselt number

The variation of average Nusselt number defined
by equation (10) with the average Grashof number
(Gr) isshown in Fig. 17. The average Grashof number
(Gr) is defined by

- Gr(l +7u) )

Gr 5

(17)
Here Nu represents an overall heat transfer coefficient
of a channel subjected to asymmetric heating. The
solid line indicates the case where the wall conduction
is absent (¢/B=0). The wall conduction effects
decrease Nu; this trend is more pronounced at lower
values of Gr. Note that this observation is consistent
with that made earlier that the mass flow rate
increases with increase in wall conduction effects. In
general, the wall conduction effects increase the aver-
age interface temperatures, leading to higher buoy-
ancy forces, and consequently, higher mass flow rates.
Nevertheless, Nu decreases with increase in average
interface temperature because they are inversely pro-
portional (equation (10)). For Gr = 5, the decrease in
Nu is as low as 22% : at Gr = 10*, the decrease is 6%.
The increase in L/B from 1 to 5 has little impact on
Nu.

CONCLUSIONS

In this investigation of the effect of wall conduction
on laminar free convection between vertical plates the
external surfaces of which are subjected to asymmetric
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1 - h =0. h -1
Ty 0 L 0.5 My
] ]
10 4 10 4 10
E L
= | = = j
—t 0
a on.l K=t L /Bat
1 o AR 15 ¢ t/Bu0.f K10 L/Bwi
1 a h ] o t/B=0.5 K=t [/B=1
] 1 ] 0 t/B=0.5 K10 L/B=1
T ] ] O t/B=0.5 K=t |/Be=$S
] T
0.5 L 1 L 1 0.5 t LI ¥ 1 0.5 L] T 1 1 1
10 0% 10° 10t 10° 1 10 10 10° 10* 10° 1 10 100 16° 10t 1
Gr Gr Gr

FiG. 15. Effect of wall conduction on mass flow rate.
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Fi1G. 16. Variation of local Nusselt number with Gr, 74 = 0.5, /B =05, K= 10, L/B=1.
S0 face heat flux distribution increases with wall con-
. gﬁ duction effects (+/8 and K) and also increases with
40 AL, l/me decrease in Gr and L/B.
(2) The increase in ¢/B and K tends to make both
3.0 A interface and external surface temperature distribu-
tions uniform in the axial direction. The impact of
wall conduction on interface temperature decreases
2.0 - with increase in Gr.
{3) The maximum influence of wall conduction on
UlU,is 3.5%.
(4) Wall conduction has a significant impact on
2 mass flow rate. Mass flow rate (M) increases with
1.0 - increase in 7 Band K. For symmetric heating (74 = 1),
09 4 the mass flow rate increases by 30% for Gr = 10 and
0.8 4 by 8% for Gr = 10*,
0.7 - (5) The increase in mass flow rate is greater for
0.5 - asymmetric heating.
) S (6) The wall con_gigction effect decreases the average
0.5 - go Nusselt number (Nu). For Gr = §, the reduction in
o s {/B=0 Nu is 22% : for Gr = 10°, the reduction is 6%.
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heat fluxes, the governing equations are solved by an
implicit finite difference scheme. Calculations were
made for a wide range of independent parameters
{Gr, t/B, K, L{B, and 7). The mass flow rate of air
increases with increase in buoyancy forces. Increase
in /8 and K results in higher interface temperatures,
leading to higher buoyancy forces. The key con-
clusions are given as follows.
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EFFET DE LA CONDUCTION PARIETALE SUR LA CONVECTION NATURELLE
ENTRE DES PLAQUES VERTICALES DIFFEREMMENT CHAUDES: DENSITE DE
FLUX THERMIQUE UNIFORME A LA PAROI

Résumé—Dans I’étude de I'effet de la conduction pariétale sur la convection naturelle laminaire entre des
plaques verticales différemment chauffées, on utilise un schéma implicite aux différences finies pour résoudre
les équations. Les paramétres indépendants sont identifiés comme étant le nombre de Prandtl (Pr), le
nombre de Grashof (Gr), le rapport des conductivités du solide et de 1'air (K), le rapport de I’épaisseur de
la paroi & la largeur du canal (¢/B), le rapport de la hauteur du canal i la largeur (L/B) et le paramétre
d’asymétrie du chauffage (y4). On discute I'effet de 1a conduction sur I’écoulement naturel d’air dans les
conditions de chauffage disymétrique (yu = 1,0; 0,5 et 0). Des calculs sont faits pour X = l et 10, ¢/B = 0,1
et 0,5, Gr = 10-10%, L/B =1 et 5. L’accroissement maximal de débit masse d’air est de 30% pour un
chauffage symétrique, du fait de la conduction pariétale. La diminution la plus grande du nombre de
Nusselt du fait de 1a conduction pariétale est de 22%. Les effets de cette conduction sont pour les faibles
Gr plus significatifs que pour les Gr élevés.

EINFLUSS DER WARMELEITUNG IN DER WAND AUF DIE FREIE KONVEKTION
ZWISCHEN ASYMMETRISCH BEHEIZTEN, SENKRECHTEN PLATTEN BEI
AUFGEPRAGTER WARMESTROMDICHTE

Zusammenfassung—In dieser Arbeit wird der EinfluB der Wirmeleitung in der Wand auf die laminare
freie Konvektion zwischen asymmetrisch beheizten, senkrechten Platten untersucht. Die Grundgleichungen
werden mit einem impliziten Finite-Differenzen-Verfahren gelost. Die maBgeblichen EinfluBgroBen sind
die Prandtl-Zahl (Pr), Grashof-Zahl (Gr), das Verhiltnis der Wirmeleitfahigkeiten von Feststoff und Luft
(K), das Verhiltnis von Wanddicke zu Plattenabstand (¢/B), das Verhiltnis von Kanalhdhe zu
Plattenabstand (L/B) und der Parameter fiir die asymmetrische Beheizung (yy). Der EinfluB der Wirme-
leitung in der Wand auf die freie Konvektionsstromung von Luft unter den Bedingungen einer asym-
metrischen Beheizung (y4 = 1,0; 0,5; und 0) wird diskutiert. Die Berechnungen werden ausgefiihrt fir
K = 1und 10, fiir ¢/B = 0,1 und 0,5, fiir Gr = 10 bis 10* und fiir L/B = 1 und 5. Die maximale Erh6hung
des Luftmassenstroms betrigt bei symmetrischer Beheizung infolge der Wirmeleitung in der Wand 30%.
Die maximale Verkleinerung der mittleren Nusselt-Zahl infolge der Warmeleitung in der Wand betragt
22%. Der EinfluB der Wirmeleitung in der Wand nimmt mit steigender Gr-Zahl ab.

BJIMAHHE TEIUVIONPOBOAHOCTH CTEHKH HA CBOBOOHYIO KOHBEKIIHMIO MEXIQY
ACHMMETPHYHO HAI'PETBIMU BEPTUKAJIbHBIMH MJIACTHHAMH: CJIIVYAR
OQHOPOJHOIrO TEIJIOBOI'O ITOTOKA HA CTEHKE

Amnoramms—C HCTIONL30BAHAEM HEABHON KOHEYHO-PA3HOCTHOR CXEMBI HCCIICYETCK BIHSHHE TEILIONpPO-
BOJHOCTH CTeHXHM Ha c3000IMYIO KOHBEXUMIO MPH JaMMHApDHOM TedennH. Haitaeso, w10 onpenensio-
HIAMHE HE3ABECHMMMM napaMerpamy ssnmiorcs wucno [Ipamaras Pr, wucno Tpacroga Gr,
COOTHOUCHNE X03)DHRIEEHTOR TCILIONPOBOAHOCTH TBEPAOrO TENA M BO3AYXa K, OTHOIICHRE TOMIIMHL
CTeHKH K INRpHIHE KaHaNa ¢/B, OTHOIICHHE BHICOTH KAHAJA K eTo tuupaHe L/B B napamMeTp aCHMMETpHY-
HOro Harpesa y,. OOCyxOaeTca BIMAHHC TEIUIONPOBOZHOCTH CTEHKEM Ha cBoboaHOXOHBEXKTHBHOCE
TedeHHE BOAAYXA B YCJIOBHEX ACHMMETPHYHOro Harpesa (y, = 1,0; 0,5 n 0), Bunosmens pacieTsl
K=1u10,¢/B=01n05; Gr=10-10* a Taxxe L/B = 1 1 5. MaxcCEMa/ILHOC YBC/IHICHAC MACCOBOTO
PACXOZ2 BO3AYXA NPH CHMMCTDHYHOM HATPEBC 3@ CUCT TCMNONPOBOMHOCTH CTCHKH cocTasanet 30%.
MaxcuMaIbHOS YMEHBIICHHE CpeHero 3HaucHRN wncia Hyccennta, o6ycrosneHHoe TEILIONPOBOAROC-
THIO CTEHKH, pasHO 22%. B ciysae TeueHns npu HMIXEX 3Ha%eHusx Gr >¢dexT TemnomposomHOCTH
cTenxH Gosice 3HAYMTEICH, 16M MDA BLICOKHX 3HAYCHHAAX Gr.



